

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

Year 12

Trial Examination

2022

Mathematics Extension II

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Write your name on the front of every booklet.
- In Questions 11 to 16 show relevant mathematical reasoning and/or calculations.
- NESA approved calculators and templates may be used.
- Weighting: 30%

Section I Multiple Choice

- 10 marks
- Attempt all questions.
- Answer Sheet provided
- Allow about 15 minutes for this section

Section II Free Response

- 90 marks
- Start a separate booklet for each question.
- Each question is of equal value.
- All necessary working should be shown in every question.
- Allow about 2 hours and 45 minutes for this section.

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- Q1. Given that 1 i is a solution of $z^3 4z^2 + 6z 4 = 0$, what are the other solutions?
 - A. 1 + i and -6
 - B. 1 + i and 2
 - C. -1 i and 4 + 2i
 - D. 1 + i and -4

Q2. Let $\underline{u} = 2\underline{i} - a\underline{j} - \underline{k}$ and $\underline{v} = 3\underline{i} + 2\underline{j} - b\underline{k}$. If these vectors are perpendicular to each other, what are the possible values for *a* and *b*?

- A. a = 2 and b = 2
- B. a = -2 and b = 10
- C. a = 0 and b = 0
- D. a = -1 and b = -8
- Q3. The diagram below shows a rhombus.

Adjacent sides are represented by two vectors, u = u = v.

It follows that:

A.
$$u \cdot v = 0$$

B. $\begin{array}{c} u = v \\ \sim & \sim \end{array}$

C.
$$(\underline{u} + \underline{v}) \cdot (\underline{u} - \underline{v}) = 0$$

D.
$$|\underbrace{u}_{\sim} + \underbrace{v}_{\sim}| = |\underbrace{u}_{\sim} - \underbrace{v}_{\sim}|$$

Q4. The graph of the function y = f(x) is shown below.

Which graph below shows the most accurate representation of the graph $y = \frac{1}{f(x)}$?

D

Q5. Consider the statement:

If the soup contains lemon or vinegar, the soup does not contain chilli.

Which of the following is logically equivalent to the statement?

- A. If the soup contains chilli, the soup does not contain lemon nor vinegar.
- B. If the soup contains chilli, the soup does not contain lemon or the soup does not contain vinegar.
- C. If the soup does not contain lemon or the soup does not contain vinegar, the soup contains chilli.
- D. If the soup does not contain lemon nor vinegar, the soup contains chilli.
- Q6. The vector equation of the line that passes through the points A (1, 0, 2) and B (3, 9, 6) is given by which of the following?
 - A. $r = i + 2k + \lambda \left(2i + 9j + 4k \right)$
 - B. $r = i + 2k + \lambda \left(2i + 9j + 8k \right)$
 - C. $r = i + 2k + \lambda \left(4i + 9j + 4k \right)$

D.
$$r = i + 2k + \lambda(2i + 4k)$$

Q7. Which expression is equal to $\int \tan^{-1} x \, dx$?

A.
$$x \tan^{-1} x - \int \frac{x}{1+x^2} dx$$

B. $x^2 \tan^{-1} x - \int \frac{x^2}{1+x^2} dx$
C. $\frac{1}{2} (\tan^{-1} x)^2$
D. $\frac{x}{2} (\tan^{-1} x)^2 - \int \frac{x}{\tan x} dx$

- Q8. Which of the following statements is FALSE?
 - A. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x^4 = 2y^3$
 - B. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x = y \Leftrightarrow \sin x = \sin y$
 - C. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \text{ such that } \sqrt{x} < e^{y}$
 - D. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \text{ such that } |y| > x$

Q9.
$$\int_{-1}^{2} 2x\sqrt{x+2} \, dx$$

A.
$$\frac{46}{15}$$

B.
$$\frac{92}{15}$$

C.
$$\frac{113}{2}$$

D.
$$\frac{28+32\sqrt{2}}{15}$$

Q10. If
$$\int_{a}^{b} \frac{1}{\sin x + \cos x} dx = 1$$
, where $a, b \in \mathbb{R}$,
what is the value of $\int_{2a}^{2b} \frac{1}{\sin \frac{x}{2} + \cos \frac{x}{2}} dx$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 2

End of Multiple Choice

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

15 marks

2

2

a. Let
$$z = 4cis\frac{5\pi}{6}$$
 and $\omega = \sqrt{2}cis\frac{\pi}{4}$.

- (i) Find z^7 in modulus-argument form.
- (ii) Express $\frac{z}{w}$ in both modulus-argument form and Cartesian form. 3
- (iii) Hence or otherwise, find the exact value of $\cos \frac{7\pi}{12}$. 2
- b. A point P moves on the x-axis so that its x-coordinate, in metres, at time t seconds is given by

$$x = 8[1 - \sin(2t)] + 3\cos(2t)$$

(i)	Show that the motion of P is significant to the second	mple harmonic.	2

- (ii) State centre and period of the motion of P.
- c. Sketch the region on the Argand diagram defined by the following

$$\{ z: 1 < |z| \le 3 \} \cap \{ z: Im(z) > Re(z) \}$$
 4

End of Question 11

15 marks

3

3

4

a. (i) Find the values of *a*, *b* and *c* such that

$$\frac{5x}{(x-1)(x^2+2x+2)} \equiv \frac{a}{x-1} + \frac{bx+c}{x^2+2x+2}$$

(ii) Hence, or otherwise, find

$$\int \frac{5x}{(x-1)(x^2+2x+2)} dx.$$

b. Let $\omega = e^{i(\sqrt[n]{n})}$, where ω is a complex number ie. ω is not $\in \mathbb{R}$

(i) Show that ω is a solution of $z^{2n} = 1$. 1

(ii) Given
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1}),$$

deduce that $1 + \omega + \dots + \omega^{2n-1} = 0.$ 1

(iii) Show that
$$1 + \omega + \dots + \omega^{n-1} = 1 + i \cot\left(\frac{\pi}{2n}\right)$$
. 3

c. Prove the following statement by contradiction.

If a, b and c are odd integers and $x \in \mathbb{Z}$, then the equation $ax^2 + bx + c = 0$ has no integer solution.

End of Question 12

]

a. (i) Express $1 + i \cot \theta$ in modulus-argument form, where $0 < \theta < \frac{\pi}{2}$

(ii) Hence, or otherwise, simplify $(1 + i \cot \theta)^{-3}$

b. Find the exact value of
$$\int_0^{\frac{\pi}{2}} \frac{1}{2 - \sin x} dx.$$
 4

c. A sequence is defined recursively as $u_1 = 1$, $u_{n+1} = 3u_n + 2n + 1$, for all positive integers n.

Use Mathematical Induction to prove that $u_n = 3^n - n - 1$ for all positive integers *n*. 3

d. A particle is initially at rest on the number line at a position of x = 1. The particle moves continuously along the number line according to the acceleration equation

$$\ddot{x}=\frac{4}{\left(x-2\right)^{2}}+\frac{8}{x^{3}}.$$

At time t, the velocity of the particle is v.

(i) Show that
$$v^2 = -\frac{8}{x-2} - \frac{8}{x^2}$$

(ii) Hence, or otherwise, determine the possible range of particle's displacement as it moves along the number line.

Question 13 completed.

1

2

3

2

a. Use an appropriate substitution to evaluate
$$\int_{0}^{4} \frac{\sqrt{x}}{(x\sqrt{x}+1)^{2}} dx$$
 3

b. Consider the statement about two positive integers *m* and *n*. "If $m^2 + n^2$ is even, then either both *m* and *n* are even or both *m* and *n* are odd."

- (i) Write down the contrapositive of the statement. 1
- (ii) Prove the original statement by contraposition.

c. (i) If
$$0 < a < 4$$
, prove that $\frac{1}{a} + \frac{1}{4-a} \ge 1$.

(ii) If 0 < a < 4, 0 < b < 4 and 0 < c < 4, prove that at least one of the numbers

$$\frac{1}{a} + \frac{1}{4-b}, \frac{1}{b} + \frac{1}{4-c}, \frac{1}{c} + \frac{1}{4-a}$$

is greater than or equal to one.

d. Let
$$I_n = \int_0^1 \frac{x^{2n}}{\sqrt{1+x^2}} dx$$
, where $n = 1, 2, 3, ...$

Deduce that $2nI_n + (2n - 1)I_{n-1} = \sqrt{2}$, where n = 2, 3, 4,

Question 14 completed.

4

3

2

a. The region enclosed by the curve $y = \ln x$, the line x = e and the x axis is shown in the diagram.

Find the volume of the solid formed by rotating the shaded region about the *x* axis.

b. Sphere *S* has a vector equation

$$\left| \underset{\sim}{r} - \left(\underbrace{3i+j+4k}_{\sim} \right) \right| = \sqrt{35}$$

(i) Write the Cartesian equation of this sphere.

(ii) The line *l* has the equation
$$r = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \lambda \in \mathbb{R}$$
. 3

Determine whether this line is a tangent to the sphere *S* or not. Give full reasons for your answer.

c. Show there exists complex numbers *z* and *w*, such that

$$\frac{1}{z} + \frac{1}{w} = \frac{1}{z+w} \text{ where } z \neq 0 \text{ and } w \neq 0.$$

d. (i) Show
$$a^2 + b^2 + c^2 \ge ab + ac + bc$$
 1

- (ii) Hence, show $(a+b+c)^2 \ge 3 (ab+ac+bc)$ 1
- (iii) Hence, prove $a^2 + b^2 + c^2 \ge 3 \times \sqrt[3]{a^2 b^2 c^2}$ 3

(Given
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Question 15 completed

3

1

3

(i)

15 marks

2

2

3

a. (i) Solve
$$z^3 = -1$$
, giving your answers in modulus-argument form. 2
(ii) Using part (i), or otherwise, find the solutions to the equation 3
 $(\pi^2 + 2)^3 = -1$

b. ABCDE is a pyramid with base measuring 8 cm by 8 cm.The height of the pyramid is 4e, where e is a real positive number.The origin O is the centre of the base.

The points P, Q, R and S are the midpoints of sides AB, BC, CE and EA respectively. The position vectors of A, B, C and D relative to O, respectively, are

$$-4i - 4j$$
, $4i - 4j$, $4i + 4j$ and $-4i + 4j$.
Show, in terms of e, that $\overrightarrow{PR} = 2i + 6j + 2ek$ and $\overrightarrow{QS} = -6i - 2j + 2ek$.

- (ii) Hence or otherwise, write the vector equations of line l, passing through points P and R, and line s, passing through points Q and S.
- (iii) Find the position vector \overline{OM} in terms of *e*, where *M* is the point of intersection of lines *l* and *s*.
- (iv) Given that \overrightarrow{OM} is perpendicular to \overrightarrow{EB} , find the value of e and hence find the acute angle between \overrightarrow{PR} and \overrightarrow{QS} . Give your answer to the nearest degree.

End of paper

Q1	$z^{3} - 4z^{2} + 6z - 4 = 0$ roots are $(1 - i)$ and $(1 + i)$ factor $z^{2} - 2Re(\alpha)z + \alpha ^{2}$ $\therefore z^{2} - 2z + 2$ $z^{3} - 4z^{2} + 6z - 4 = (z^{2} - 2z + 2)(az + b)$ $\therefore \qquad a = 1$ b = -2 Other roots are $1 + i$ and 2	В
Q2	u = 2i - aj - k v = 3i + 2j - bk $u \cdot v = 0$ $u \cdot v = 2 \times 3 - 2a + b = 0$ b - 2a = -6 -8 - 2(-1) = -6 a = -1 b = -8	D
Q3	$u + v$ $u + v$ $u - v$ $u - v$ Diagonals of rhombus are perpendicular therefore $(u + v) \cdot (u - v) = 0$	С

Q4	$\begin{array}{c} y \\ 4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	D
Q5	If the soup contains chilli, the soup does not contain lemon nor vinegar.	А
Q6	A = i + 2k B = 3i + 9j + 6k $\overrightarrow{AB} = 2i + 9j + 4k$ $\overrightarrow{r} = i + 2k + \lambda \left(2i + 9j + 4k\right)$	А
Q7	$u = \tan^{-1}x \qquad v' = 1$ $u' = \frac{1}{1+x^2} \qquad v = x$ $I = uv - \int vu' dx$ $= x \tan^{-1}x - \int \frac{x}{1+x^2} dx$	А
Q8	$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x = y \Leftrightarrow \sin x = \sin y$	В

Q9	$\int_{-1}^{2} 2x\sqrt{x+2} dx$ $l\eta \ u = x+2$ $x = u-2 \Rightarrow dx = du$ $x = -1 \Rightarrow u = 1$ $x = 2 \Rightarrow u = 4$ $\int_{-1}^{4} 2(u-2)\sqrt{u} du$ $= 2\int_{-1}^{4} u^{\frac{3}{2}} - 2u^{\frac{1}{2}} du$ $= 2\left[\frac{2}{5}u^{\frac{5}{2}} - \frac{4}{3}u^{\frac{3}{2}}\right]_{-1}^{4}$ $= 2\left\{\left(\frac{2}{5} \times 2^{5} - \frac{4}{3} \times 2^{3}\right) - \left(\frac{2}{5} \times 1 - \frac{4}{3} \times 1\right)\right\}$ $= 2\left(\frac{64}{5} - \frac{32}{3} - \frac{2}{5} + \frac{4}{3}\right) = \frac{92}{15}$	Α
Q10	$\int_{a}^{b} \frac{1}{\sin x + \cos x} dx = 1$ $\det x = \frac{u}{2} \implies 2x = u$ $2dx = du$ $x = a \implies u = 2a$ $x = b \implies u = 2b$ $\therefore \int_{2a}^{2b} \frac{2}{\sin \frac{u}{2} + \cos \frac{u}{2}} du = 1$ $\int_{2a}^{2b} \frac{1}{\sin \frac{x}{2} + \cos \frac{x}{2}} dx = \frac{1}{2}$	В

Question 11.

a-i	$z = R \operatorname{cis} \theta$ $z^{7} = R^{7} \operatorname{cis}(7\theta)$ $\therefore z^{7} = 4^{7} \operatorname{cis} \frac{35\pi}{6}$ $= 16384 \operatorname{cis} \left(-\frac{\pi}{6}\right)$	 2 marks – correct solution 1 mark – either - correct argument - correct modulus
a-ii	ModArg form $\frac{z_1}{z_2} = \frac{R_1 \operatorname{cis} \theta}{R_2 \operatorname{cis} \beta} = \frac{R_1}{R_2} \operatorname{cis}(\theta - \beta)$ $= \frac{4}{\sqrt{2}} \operatorname{cis}\left(\frac{5\pi}{6} - \frac{\pi}{4}\right)$ $= 2\sqrt{2} \operatorname{cis}\frac{7\pi}{12}$ Cartesian form: $\frac{z}{w} = \frac{-2\sqrt{3} + 2i}{1 + i} \times \frac{1 - i}{1 - i} = (1 - \sqrt{3}) + i(1 + \sqrt{3})$ $\frac{z}{w} = \frac{-2\sqrt{3} + 2}{2} + \frac{2 + 2\sqrt{3}}{2}i \text{was also accepted}$ Decimal Form was <i>NOT</i> accepted	3 marks Provides correct solution 2 marks Expresses fraction in both modulus- argument or Cartesian form (but with the denominator not realised), or equivalent merit 1 mark - uses $\frac{z_1}{z_2}$ to produce correct modulus or argument - uses $\frac{z}{\omega}$ to produce correct fraction
a-iii	Using part (ii) and equating the real parts, $2\sqrt{2}\cos\frac{7\pi}{12} = 1 - \sqrt{3}$ $\therefore \cos\frac{7\pi}{12} = \frac{1 - \sqrt{3}}{2\sqrt{2}}$	 2 marks – correct solution 1 mark - Attempts to equate real or imaginary parts of the two expression in part (i), or equivalent merit

c-i	Note: $x = 8[1 - \sin(2t)] + 3\cos(2t)$ $\therefore x - 8 = -8\sin(2t) + 3\cos(2t)$ $\dot{x} = -16\cos(2t) - 6\sin(2t)$ $\ddot{x} = 32\sin(2t) - 12\cos(2t)$ $= -4(x - 8) \text{ which is in the form } -n^{2}(x - c)$ Hence motion is SHM	2 marks – correct solution 1 mark – correct approach with one arithmetic error.
c-ii	Centre $x = 8$, period= $\frac{2\pi}{2} = \pi$	2 marks – both answers 1 mark – one answer only
d	 Im(z) (a,a) (a,a) (a,a) (a,a) <i>Re(z)</i> Features to include 1. Correct circles and shading. 2. Correct boundaries ie. full or dotted line 3. Correct angle or indicated line is y = x or equivalent, 4. Open circles used correctly. 	4 marks – one mark for each correct feature

г

a-i	$5x \equiv a(x^{2} + 2x + 2) + (x - 1)(bx + c)$ Let $x = 1$: $5 = 5a \rightarrow a = 1$ $x = 0$: $0 = 2a - c \rightarrow c = 2$ $x = -1$: $-5 = a - 2(-b + c) \rightarrow b = -1$	 3marks – correct solution 2 marks – correct approach with one arithmetic error. 1 mark – correct initial equation equating numerators
a-ii	$I = \int \frac{5x}{(x-1)(x^2+2x+2)} dx = \int \left(\frac{1}{x-1} + \frac{-x+2}{x^2+2x+2}\right) dx$ $I = \int \left(\frac{1}{x-1} - \frac{\frac{1}{2}(2x+2) - 3}{x^2+2x+2}\right) dx$ $I = \int \left(\frac{1}{x-1} - \frac{1}{2} \times \frac{2x+2}{x^2+2x+2} + \frac{3}{(x+1)^2+1}\right) dx$ $I = \ln x-1 - \frac{1}{2}\ln(x^2+2x+2) + 3\tan^{-1}(x+1) + c$ or $I = \ln\left \frac{x-1}{\sqrt{x^2+2x+2}}\right + 3\tan^{-1}(x+1) + c$	 3 marks - correct solution 2 marks - writes the integrand as the correct sum of fractions and completes the square in a denominator, or equivalent merit 1 mark correct integration achieving ln x - 1 attempts to write as sum of three fractions.
b-i	$\omega^{2n} = \left(e^{\frac{\pi i}{n}}\right)^{2n}$ $= e^{2\pi i}$ $= 1$	1 mark - Provides correct solution
b-ii	$\omega^{2n} - 1 = 0$ $\Rightarrow (\omega - 1) (\omega^{2n-1} + \dots + \omega + 1) = 0$ Since $\omega \neq 1$, $\omega^{2n-1} + \dots + \omega + 1 = 0$	1 mark - Provides correct solution including statement that $\omega \neq 1$

	$1+\omega+\cdots+\omega^{n-1}=rac{1-\omega^n}{1-\omega}$	
	$=\frac{1-e^{\pi i}}{1-\cos\left(\frac{\pi}{n}\right)-i\sin\left(\frac{\pi}{n}\right)}$	
	$\boxed{\text{Line 1}} = \frac{1 - (-1)}{1 - \cos\left(\frac{\pi}{n}\right) - i\sin\left(\frac{\pi}{n}\right)} \times \frac{1 - \cos\left(\frac{\pi}{n}\right) + i\sin\left(\frac{\pi}{n}\right)}{1 - \cos\left(\frac{\pi}{n}\right) + i\sin\left(\frac{\pi}{n}\right)}$	
	$=\frac{2\left(1-\cos\left(\frac{\pi}{n}\right)+i\sin\left(\frac{\pi}{n}\right)\right)}{\left(1-\cos\left(\frac{\pi}{n}\right)\right)^2+\left(\sin\left(\frac{\pi}{n}\right)\right)^2}$	3 marks - Provides correct solution
b-iii	Line 2 = $\frac{2\left(1-\cos\left(\frac{\pi}{n}\right)+i\sin\left(\frac{\pi}{n}\right)\right)}{(\pi)}$	2 marks - correct to Line 2
	$2-2\cos\left(\frac{\pi}{n}\right)$	1 mark – Produces either
	$1 - \cos\left(\frac{\pi}{n}\right) \qquad \sin\left(\frac{\pi}{n}\right)$	fraction in Line 1.
	$=\frac{(n)}{1-\cos\left(\frac{\pi}{n}\right)}+i\frac{(n)}{1-\cos\left(\frac{\pi}{n}\right)}$	
	$=1+i\frac{2\sin\left(\frac{\pi}{2n}\right)\cos\left(\frac{\pi}{2n}\right)}{2\sin\left(\frac{\pi}{2n}\right)}$	
	$2\sin^2\left(\frac{\pi}{2n}\right)$	
	$=1+i\cot\left(\frac{\pi}{2n}\right)$	

	Suppose for a contradiction that a , b and c are odd integers and the equation $ax^2 + bx + c = 0$ has an integer solution. For $A, B, C \in \mathbb{Z}$, let a = 2A + 1, b = 2B + 1, and c = 2C + 1 $\therefore (2A + 1)x^2 + (2B + 1)x + (2C + 1) = 0$ [*]	
c	Case 1: x is an even number, i.e. $x = 2k, k \in \mathbb{Z}$. Since x is a solution, substitute into [*]: $(2A + 1)(2k)^2 + (2B + 1)(2k) + (2C + 1) = 0$ Expand to give: $2[2k^2(2A + 1) + k(2B + 1) + C] + 1 = 0$ LHS is an odd number which cannot equal to zero, hence absurd. Case 2: x is an odd number, i.e. $x = 2k + 1, k \in \mathbb{Z}$. Since x is a solution, substitute into [*]: $(2A + 1)(2k + 1)^2 + (2B + 1)(2k + 1) + (2C + 1) = 0$ Expand to give: $(2A + 1)(4k^2 + 4k + 1) + 4Bk + 2B + 2k + 1 + 2C + 1 = 0$ $2A(4k^2 + 4k) + 4k^2 + 6k + 3 + 4Bk + 2B + 2C = 0$ $2[A(4k^2 + 4k) + 2k^2 + 3k + 1 + 2Bk + B + C] + 1 = 0$ LHS is an odd number which cannot equal to zero, hence absurd. \therefore initial supposition is false \therefore if a, b and c are odd integers, then $ax^2 + bx + c = 0$ has no integer solution	 4 marks – correct solution. 3 marks – attempts both odd and even expressions but only one correct. 2 marks attempts one case only and proven correctly. attempts to use quadratic formula to to show no integer solutions ie. more than simply deriving quad formula 1 mark – correctly converts a, b and c to an expression for odd numbers.

a-i	$1 + i \cot \theta = 1 + i \frac{\cos \theta}{\sin \theta}$ = $\frac{\sin \theta + i \cos \theta}{\sin \theta}$ = $\frac{1}{\sin \theta} [\sin \theta + i \cos \theta]$ = $\frac{1}{\sin \theta} [\cos (\frac{\pi}{2} - \theta) + i \sin (\frac{\pi}{2} - \theta)]$ = $cosec \theta cis (\frac{\pi}{2} - \theta)$ $\sqrt{1 + \cot \theta^2}$ was also accepted. If the argument was in degrees this was also accepted.	2 marks – correct solution 1 mark – either - correct modulus - correct argument
a-ii	$(1 + i \cot \theta)^{-3} = \left(cosec \ \theta \ cis \ \left(\frac{\pi}{2} - \theta\right) \right)^{-3}$ $= cosec^{-3} \ \theta \ cis \ \left[-3 \left(\frac{\pi}{2} - \theta\right) \right]$ $= sin^{3} \ \theta \ cis \left(3\theta - \frac{3\pi}{2} \right)$ $= sin^{3} \ \theta \ cis \left(3\theta + \frac{\pi}{2} \right)$	1 mark
Ь	Let $t = \tan \frac{x}{2}$ $dt = \frac{1}{2} \sec^2 \frac{x}{2} dx = \frac{1}{2} (1 + t^2) dx$ $dx = \frac{2}{1 + t^2} dt$ $\therefore \sin x = \frac{2t}{1 + t^2}$ When $x = 0, t = 0$ $x = \frac{\pi}{2}, t = 1$ $\therefore I = \int_0^{\frac{\pi}{2}} \frac{1}{2 - \sin x} dx = \int_0^1 \frac{1}{2 - \frac{2t}{1 + t^2}} \frac{2}{1 + t^2} dt$ $I = \int_0^1 \frac{2}{2 - \frac{2t}{1 + t^2}} \times \frac{2}{1 + t^2} dt$ $I = \int_0^1 \frac{2}{2(1 + t^2) - 2t} dt$ $I = \int_0^1 \frac{2}{2t^2 - 2t + 2} dt$	4 marks - Provides correct solution 3 marks - Finds the correct integral, or equivalent merit 2 marks - Completes <i>t</i> - substitution, including the limits of integration, or equivalent merit 1 mark - Attempts to use a <i>t</i> -substitution, or equivalent merit

$= \int_{0}^{1} \frac{1}{t^2 - t + 1} \mathrm{d}t$	
$= \int_{0}^{1} \frac{1}{\left(t - \frac{1}{2}\right)^{2} + \frac{3}{4}} dt$	
$= \left[\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2t-1}{\sqrt{3}}\right)\right]_{0}^{1}$	
$= \frac{2}{\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}} \tan^{-1} \left(-\frac{1}{\sqrt{3}} \right)$	
$= \frac{2}{\sqrt{3}} \times \frac{\pi}{6} - \frac{2}{\sqrt{3}} \times -\frac{\pi}{6}$	
$=\frac{4\pi}{6\sqrt{3}}$	
$= \frac{2\pi}{3\sqrt{3}}$	
$=\frac{2\sqrt{3\pi}}{9}$	

$$\begin{split} P(n): u_n &= 3^n - n - 1, n \in Z^+, \\ \text{for the sequence } u_1 &= 1 \ , \ u_{n+1} &= 3u_n + 2n + 1, n \in Z^+. \end{split}$$
3 marks - correct soluion Prove P(1) true: By formula, $u_1 = 3^1 - 1 - 1 = 1$ By definition, $u_1 = 1$ 2 marks - Proves true $\therefore P(1)$ is true for n = 1 and Assume P(k) true, $k \in \mathbb{Z}^+$ incorporates the i.e. $u_k = 3^k - k - 1$ с assumption P(k) into Prove P(k + 1) true. P(k + 1)i.e. prove $u_{k+1} = 3^{k+1} - (k+1) - 1 = 3^{k+1} - k - 2$ Now, from the definition: $u_{k+1} = 3u_k + 2k + 1$ $u_{k+1} = 3(3^k - k - 1) + 2k + 1$ using the assumption $u_{k+1} = 3^{k+1} - 3k - 3 + 2k + 1$ 1 mark - Proves true for n = 1 $u_{k+1} = 3^{k+1} - k - 2$ $\therefore P(k+1) \text{ is true if } P(k) \text{ is true.}$ Hence, by mathematical induction, P(n) is true for all positive integers $n \ge 1$ $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = 4(x-2)^{-2} + 8x^{-3}$ 2 marks - Provides correct solution $\frac{1}{2}v^2 = -4(x-2)^{-1} - 4x^{-2} + c$ 1 mark - Makes some $x = 1, v = 0 \Longrightarrow c = 0$ d-i use of $\frac{d}{dr}\left(\frac{1}{2}v^2\right)$ or $\therefore \frac{1}{2}v^2 = -4(x-2)^{-1} - 4x^{-2}$ equivalent merit $\therefore v^2 = -\frac{8}{r-2} - \frac{8}{r^2}$ у 10 4 2 4 $-5 \ddagger f(x) = (x+2)(x-1)(x-2)$ -10 🗄 3 marks – correct $v^2 \ge 0$ solution $\Rightarrow -8\left(\frac{1}{x-2} + \frac{1}{x^2}\right) \ge 0$ 2 marks – determine both possible solutions d-ii $\Rightarrow \frac{1}{x-2} + \frac{1}{x^2} \le 0$ but does not exclude x=2 $\Rightarrow \frac{x^2 + x - 2}{x^2 (x - 2)} \le 0$ 1 mark – attempts to solve required inequality. $\Rightarrow \frac{(x+2)(x-1)(x-2)}{x^2(x-2)^2} \le 0$ From the sketch of the cubic numerator, $x \le -2$ or $1 \le x < 2$ [Note that x - 2 is originally in the denominator] Since the particle moves continuously, we can only use $1 \le x < 2$

OR

$$\frac{x^2 + x - 2}{x^2(x - 2)} = 0 \quad x \neq 0 \text{ or } x \neq 2$$

$$x^2 + x - 2 = 0$$

$$(x + 2)(x - 1) = 0$$

$$x = -2 \text{ or } x = 1$$
Test points: when $x < -2$ inequality is true
when $-2 < x < 0$ inequality is false
when $0 < x < 1$ inequality is false
when $1 < x < 2$ inequality is true
when $x > 2$ inequality is false
since the particle starts at $x = 1$ and moves continuously
only solution is $1 \le x < 2$
However, students who left $x \le -2$ were not penalised.

a	$I = \int_{0}^{4} \frac{\sqrt{x}}{(x\sqrt{x}+1)^{2}} dx$ Let $u^{2} = x$ ($u \ge 0$) è $2u du = dx$ When $x = 0, u = 0$ x = 4, u = 2 $\therefore I = \int_{0}^{2} \frac{u}{(u^{2}.u+1)^{2}} 2u du = \int_{0}^{2} \frac{2u^{2}}{(u^{3}+1)^{2}} du$ $I = \left[-\frac{2}{3(u^{3}+1)}\right]_{0}^{2} = -\frac{2}{3\times9} - \left(-\frac{2}{3}\right) = \frac{16}{27}$	 3 marks - correct solution 2 marks - Obtains a correct primitive, or equivalent merit 1 mark - Uses an appropriate substitution, including the limits of integration, or equivalent merit
b- i	If x, y are two integers for which one is odd and one is even, then $x + y$ is odd.	1 mark – correct solution
b- ii	Assume x is even, y is odd $\exists k,m \in \mathbb{Z} \text{ such } x = 2k , y = 2m + 1$ $x + y = 2k + 2m + 1$ $= 2(k + m) + 1$ $\therefore x + y \text{ is odd}$ $nO \Rightarrow nP$	2 marks – correct solution 1 mark – attempts correct method ie. makes correct statement $\exists k,m \in \mathbb{Z} \text{ such } x = 2k$, $y = 2m + 1$
c- i	$\frac{1}{a} + \frac{1}{4-a} - 1 = \frac{4-a+a-a(4-a)}{a(4-a)}$ $= \frac{(a-2)^2}{a(4-a)} \ge 0 \text{ since } 0 < a < 4 \text{ makes the denominator positive}$ Hence $\frac{1}{a} + \frac{1}{4-a} \ge 1$	2 marks – correct solution 1 mark – forms correct inequality
c- ii	Assume $\frac{1}{a} + \frac{1}{4-b} < 1, \frac{1}{b} + \frac{1}{4-c} < 1$ and $\frac{1}{c} + \frac{1}{4-a} < 1$ By addition, $\left(\frac{1}{a} + \frac{1}{4-b}\right) + \left(\frac{1}{b} + \frac{1}{4-c}\right) + \left(\frac{1}{c} + \frac{1}{4-a}\right) < 3$ $\Rightarrow \left(\frac{1}{a} + \frac{1}{4-a}\right) + \left(\frac{1}{b} + \frac{1}{4-b}\right) + \left(\frac{1}{c} + \frac{1}{4-c}\right) < 3$ But, from part (i), each bracket is at least 1, a contradiction. Hence, at least one of the three numbers is at least 1	 3 marks – correct solution 2 marks - Makes significant progress towards a solution. 1 mark - Makes little progress towards a solution

Option 1

$$I_{n} = \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx$$

$$I_{n} = \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx \text{ since } n \ge 2$$

$$I_{n} = \int_{0}^{1} \frac{(1+x^{2}-1)x^{2n-2}}{\sqrt{1+x^{2}}} dx$$

$$I_{n} = \int_{0}^{1} \frac{(1+x^{2})x^{2n-2}}{\sqrt{1+x^{2}}} dx - \int_{0}^{1} \frac{x^{2(n-1)}}{\sqrt{1+x^{2}}} dx$$

$$I_{n} = \int_{0}^{1} \frac{(1+x^{2})x^{2n-2}}{\sqrt{1+x^{2}}} dx - \int_{0}^{1} \frac{x^{2(n-1)}}{\sqrt{1+x^{2}}} dx$$

$$I_{n} = \int_{0}^{1} x^{2n-2} \sqrt{1+x^{2}} dx - I_{n-1}$$

$$I_{n} = \int_{0}^{1} x^{2n-2} \sqrt{1+x^{2}} dx, \text{ integrate by parts as follows:}$$

$$u = \sqrt{1+x^{2}} \quad \therefore u = \frac{1}{2n-1} x^{2n-1}$$

$$\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \left[\frac{x^{2n-1}\sqrt{1+x^{2}}}{2n-1} \right]_{0}^{1} - \frac{1}{2n-1} \int_{0}^{1} x^{2n-1} \frac{x}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx - I_{n-1}$$

$$I_{n} = \sqrt{2} I_{n} - (2n-1)I_{n-1}$$

$$\therefore 2n I_{n} + (2n-1)I_{n-1} = \sqrt{2} \text{ as required}$$

$$I_{n} = \frac{\sqrt{2}}{2n-1} - \frac{1}{2n-1} I_{n} - I_{n-1}$$

Option 2

$$I_{n} = \int_{0}^{1} \frac{x^{2n}}{\sqrt{1+x^{2}}} dx$$

$$= \int_{0}^{1} \frac{x \cdot x^{2n-1}}{\sqrt{1+x^{2}}} dx$$

$$u = x^{2n-1} \qquad dv = \frac{x}{\sqrt{1+x^{2}}}$$

$$du - (2n-1)x^{2n-2} \qquad v = \int \frac{x}{\sqrt{1+x^{2}}} dx$$

$$= \frac{1}{2} \int \frac{2x}{\sqrt{1+x^{2}}} dx$$

$$= (1+x^{2})^{\frac{1}{2}} = \sqrt{1+x^{2}})$$

$$I_{n} = \left[x^{2n-1}\sqrt{1+x^{2}}\right]_{0}^{1} - \int_{0}^{1}\sqrt{1+x^{2}} (2n-1) \cdot x^{2n-2} dx$$

$$= \sqrt{2} - \int_{0}^{1} \sqrt{1+x^{2}} (2n-1) \cdot x^{2n-2} dx$$

$$= \sqrt{2} - (2n-1) \cdot \int_{0}^{1} \frac{(1+x^{2}) \cdot x^{2n-2}}{\sqrt{1+x^{2}}} dx$$

$$= \sqrt{2} - (2n-1) \cdot \int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx$$

$$= \sqrt{2} - (2n-1) \left[\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{0}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{n-1}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

$$= \sqrt{2} - (2n-1) \left[\int_{n-1}^{1} \frac{x^{2n-2}}{\sqrt{1+x^{2}}} dx + \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{2}}} dx \right]$$

b-i	Let $\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}},$ $\left \underline{\mathbf{r}} - (3\underline{\mathbf{i}} + \underline{\mathbf{j}} + 4\underline{\mathbf{k}})\right = \sqrt{35}$ $\left (x-3)\underline{\mathbf{i}} + (y-1)\underline{\mathbf{j}} + z - 4\underline{\mathbf{k}}\right = \sqrt{35}$ $\therefore (x-3)^2 + (y-1)^2 + (z-4)^2 = 35$	1 mark
b-i	$\underline{r} = \begin{pmatrix} 2\\ 0\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$ If the line is a tangent, then only one unique value of λ exists for the expression $\begin{vmatrix} r - \begin{pmatrix} 3\\ 1\\ 4 \end{pmatrix} \end{vmatrix} = \sqrt{35}$ Test for values of λ that satisfy following $\begin{vmatrix} r - \begin{pmatrix} 3\\ 1\\ 4 \end{pmatrix} \end{vmatrix} = \sqrt{35}$ LHS = $\begin{vmatrix} \begin{pmatrix} 2\\ 0\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix} - \begin{pmatrix} 3\\ 1\\ 4 \end{pmatrix} \end{vmatrix}$ $= \begin{vmatrix} \begin{pmatrix} -1 + \lambda\\ -1 + 2\lambda\\ -1 - \lambda \end{vmatrix}$ $= \sqrt{(\lambda - 1)^2 + (2\lambda - 1)^2 + (-1 - \lambda)^2}$ $= \sqrt{\lambda^2 - 2\lambda + 1 + 4\lambda^2 - 4\lambda + 1 + \lambda^2 + 2\lambda + 1}$ $= \sqrt{6\lambda^2 - 4\lambda + 3} = \sqrt{35}$ $6\lambda^2 - 4\lambda + 3 = 35$ $6\lambda^2 - 4\lambda - 32 = 0$ $3\lambda^2 - 2\lambda - 16 = 0$ $\Delta = (-2)^2 - 4(-16)(3)$ $= 196 > 0$ \therefore 2 solutions \Rightarrow not a tangent	3 marks

d-i	$a^{2}+b^{2}+c^{2} \ge ab+ac+bc$ $(a-b)^{2} \ge 0$ $a^{2}-2ab+b^{2} \ge 0$ $a^{2}+b^{2} \ge 2ab$ Similarly $a^{2}+c^{2} \ge 2ac$ $b^{2}+c^{2} \ge 2bc$ $2a^{2}+2b^{2}+2c^{2} \ge 2ab+2ac+2bc$ $a^{2}+b^{2}+c^{2} \ge ab+ac+bc$	1 mark
e-i	$(a+b+c)^{2} \ge 3(ab+ac+bc)$ LHS = $(a+b+c)^{2}$ = $a^{2}+b^{2}+c^{2}+2ab+2bc+2ac$ = $a^{2}+b^{2}+c^{2}+2ab+2bc+2ac$ $\ge ab+bc+ac+2ab+2bc+2ac$ $\ge ab+bc+ac+2ab+2bc+2ac$ $\ge 3ab+3bc+3ac$ $\ge 3(ab+bc+ac)$	1 mark

e-ii
hence prove:
$$a^2 + b^2 + c^2 \ge 3\sqrt[3]{a^2b^2c^2}$$

 $(a - b)^2 \ge 0$
 $a^2 - 2ab + b \ge 0$
 $a^2 - ab + b^2 \ge ab$
 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
 $a^2 + b^2 \ge (a + b)ab \dots (1)$
Similarly
 $b^3 + c^3 \ge (a + b)ab \dots (2)$
 $a^3 + c^3 \ge (a + c)ac \dots (3)$
Multiply Lines I. 2. 3 by $\frac{c}{c} \frac{a}{a} and \frac{b}{b}$ gives
 $a^3 + b^3 \ge \left(\frac{a}{b} + \frac{b}{c}\right)abc$
 $b^3 + c^3 \ge \left(\frac{a}{b} + \frac{c}{b}\right)abc$
 $b^3 + c^3 \ge \left(\frac{a}{b} + \frac{c}{b}\right)abc$
 $a^3 + c^3 \ge \left(\frac{a}{b} + \frac{c}{b}\right)abc$
Now add these new inequalities
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{a^2 + b^3 + c^2 + a^2 + c^2 + b^2 + c^2}{bc}\right)$
 $nb a^2 + b^2 \ge 2ab$
 $\therefore 2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{b^2 + c^2}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^3) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^2) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^2) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $2(a^3 + b^3 + c^2) \ge abc\left(\frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{bc}\right)$
 $1 tet a \rightarrow \sqrt{a} \ b \rightarrow \sqrt{b} \ c \rightarrow \sqrt{c}^2$
 $a^2 + b^2 + c^2 \ge 3\sqrt{a}\sqrt{a^2b^2}$

a-i	Clearly, $z = -1 = cis \pi$ is a solution. The solutions lie on the unit circle, equally spaced. Hence, solutions are: $z = cis \pi$, $cis \frac{\pi}{3}$, $cis \left(-\frac{\pi}{3}\right)$	2 marks – correct solution 1 mark - Writes one of the solutions in modulus- argument form
a-ii	Using part (ii), $z^{2} + 2 = cis \pi$, $cis \frac{\pi}{3}$, $cis \left(-\frac{\pi}{3}\right)$ $z^{2} + 2 = cis \pi$: $z^{2} + 2 = -1$ $z^{2} = -3$ $z = \pm i\sqrt{3}$ $z^{2} + 2 = cis \frac{\pi}{3}$: $z^{2} + 2 = cis \frac{\pi}{3}$: $z^{2} + 2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ $z^{2} = -\frac{3}{2} + \frac{\sqrt{3}}{2}i$ $z^{2} = \sqrt{3} cis \frac{5\pi}{6}$ $z = \sqrt[4]{3} cis \frac{5\pi}{12}$, $\sqrt[4]{3} cis \left(\frac{5\pi}{12} - \pi\right)$ $z = \sqrt[4]{3} cis \frac{5\pi}{12}$, $\sqrt[4]{3} cis \left(-\frac{7\pi}{12}\right)$ $z^{2} + 2 = cis \left(-\frac{\pi}{3}\right)$: $z^{2} + 2 = cis \left(-\frac{\pi}{3}\right)$: $z^{2} + 2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ $z^{2} = -\frac{3}{2} - \frac{\sqrt{3}}{2}i$ $z^{2} = \sqrt{3} cis \left(-\frac{5\pi}{12}\right)$, $\sqrt[4]{3} cis \left(-\frac{5\pi}{12} + \pi\right)$ $z = \sqrt[4]{3} cis \left(-\frac{5\pi}{12}\right)$, $\sqrt[4]{3} cis \left(\frac{\pi}{12}\right)$ \therefore The six solutions are: $z = \pm i\sqrt{3}$, $\sqrt[4]{3} cis \frac{5\pi}{12}$, $\sqrt[4]{3} cis \left(-\frac{5\pi}{12}\right)$, $\sqrt[4]{3} cis \frac{7\pi}{12}$, $\sqrt[4]{3} cis \left(-\frac{7\pi}{12}\right)$	3 marks – correct solution 2 marks - Finds two solutions, each from a different substitution of the 3 expressions from (i), or equivalent merit. Equivalent forms of solutions were accepted. 1 mark - Finds one solution, or equivalent merit

	Find \overrightarrow{PR} and \overrightarrow{QS} in terms of e .	
b-i	$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP}$ $\overrightarrow{OR} = \frac{\overrightarrow{OE} + \overrightarrow{OC}}{2} = \frac{4e\underline{k} + 4\underline{i} + 4\underline{j}}{2} = 2\underline{i} + 2\underline{j} + 2e\underline{k}$ $\overrightarrow{OP} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} = -4\underline{j}$	2 Marks: Provides correct solution. (Must include working for QS) 1 Mark: Finds \overrightarrow{PR} or \overrightarrow{QS} , or
	$PR = 2\underline{i} + 6\underline{j} + 2\underline{e}\underline{k}$ Similarly, $\overline{QS} = -6\underline{i} - 2\underline{j} + 2\underline{e}\underline{k}$	equivalent merit
b-ii		2 Marks: Provides correct solution.
	For Line <i>l</i> , use point <i>P</i> and direction vector \overrightarrow{PR} : \therefore Line <i>l</i> : $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 6 \\ 2e \end{pmatrix}$	OR Obtains equations consistent with an error in part (i)
	For Line <i>s</i> , use point <i>Q</i> and direction vector \overrightarrow{QS} :	1Mark: Writes the vector
	$\therefore \text{ Line } s: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -6 \\ -2 \\ 2e \end{pmatrix}$	equation of either Line <i>l</i> or Line <i>s</i> , or equivalent merit OR
		Obtains the correct direction vector for each line.
	To find the point of intersection, equate the <i>x</i> components:	
b-iii	$2\lambda = 4 - 6\mu$ $\therefore \lambda = 2 - 3\mu $ [1]	2 Marks - Uses the values of the parameters to find the
	Equate the y components and use [1]: $-4 + 6\lambda = -2\mu$	point of intersection, making one error
	$-4 + 6(2 - 3\mu) = -2\mu$ $\therefore \mu = \frac{1}{2} \text{ and } \lambda = \frac{1}{2}$	1 Mark - Correctly equates x and y components and
	\therefore Point of intersection is $(1, -1, e)$	attempts to solves simultaneously to find the
	$\therefore \overrightarrow{OM} = \underline{i} - \underline{j} + e\underline{k}$	values of the parameters
		3 Marks: Correct answer
b-iv	$\overrightarrow{EB} = \overrightarrow{OB} - \overrightarrow{OE} = \underline{4i} - 4\underline{j} - 4\underline{e}\underline{k}$	2 Marks: Obtains two correct values for $e, \cos\Theta$ or
	If $\overrightarrow{OM} \perp \overrightarrow{EB}$, $\overrightarrow{OM} \cdot \overrightarrow{EB} = 0$:	θ

$$\begin{pmatrix} 1\\ -1\\ e \end{pmatrix} \cdot \begin{pmatrix} 4\\ -4\\ -4e \end{pmatrix} = 0$$

$$4 + 4 - 4e^{2} = 0$$

$$e = \sqrt{2} \quad (e > 0)$$
The angle between \overrightarrow{PR} and \overrightarrow{QS} :
$$\overrightarrow{PR} = 2\underline{i} + 6\underline{j} + 2\sqrt{2}\underline{k}$$

$$\overrightarrow{QS} = -6\underline{i} - 2\underline{j} + 2\sqrt{2}\underline{k}$$

$$\therefore \cos \theta = \frac{\overrightarrow{PR} \cdot \overrightarrow{QS}}{|\overrightarrow{PR}||\overrightarrow{QS}|} = \frac{-12 - 12 + 8}{\left(\sqrt{2^{2} + 6^{2} + (2\sqrt{2})^{2}}\right)^{2}} = -\frac{1}{3}$$

$$\therefore \theta \cong 109^{\circ} \text{ (nearest degree)}$$